



Roll No.:

Anna University (University Departments)

B.E./B.Tech.(Full Time) End Semester Examinations – April/May – 2024

Common to All Branches

Semester – III

MA5355 – Transform Techniques and Partial Differential Equations

(Regulation 2019)

Time: 3 Hours

Answer all the Questions

Max. Marks: 100

|      |                                                                                                                                                                            |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO 1 | To introduce the effective mathematical tools for the solutions of partial differential equations that model physical processes.                                           |
| CO 2 | To introduce Fourier series analysis which is central to many applications in engineering.                                                                                 |
| CO 3 | To develop the analytic solutions for partial differential equations used in engineering by Fourier series.                                                                |
| CO 4 | To acquaint the student with Fourier transform techniques used in wide variety of situations in which the functions used are not periodic.                                 |
| CO 5 | To develop Z- transform techniques which will perform the same task for discrete time systems as Laplace Transform, a valuable aid in analysis of continuous time systems. |

**BL – Bloom's Taxonomy Levels**

L1 – Remembering, L2 – Understanding, L3 – Applying, L4 – Analysing, L5 – Evaluating, L6 – Creating.

| Q.No.                               | Question                                                                  | Marks | CO | BL         |
|-------------------------------------|---------------------------------------------------------------------------|-------|----|------------|
| <b>Part – A (10 x 2 = 20 Marks)</b> |                                                                           |       |    |            |
| 1                                   | Find the partial differential equation of $(x-a)^2 + (y-b)^2 + z^2 = 1$ . | 2     | 1  | L3, L5,    |
| 2                                   | Find complete integral of $pq = 2$ .                                      | 2     | 1  | L1, L3, L5 |
| 3                                   | State the existence condition of Fourier series.                          | 2     | 2  | L1, L2     |
| 4                                   | Write briefly about Harmonic Analysis.                                    | 2     | 2  | L1, L2     |
| 5                                   | Classify the equation $D^2 + 4DD' + 3D'^2 = e^{x+2y}$ .                   | 2     | 3  | L1         |
| 6                                   | Write briefly about one dimensional wave equation.                        | 2     | 3  | L1         |
| 7                                   | State Fourier integral theorem.                                           | 2     | 4  | L1         |
| 8                                   | State modulation property of Fourier transform.                           | 2     | 4  | L1, L2     |
| 9                                   | State initial and Final value theorem of Z - transform.                   | 2     | 5  | L1         |
| 10                                  | Form the difference equation of $y_n = a + b3^n$ .                        | 2     | 5  | L1, L5     |

| Q.No.  | Question<br>Part - B (5 x 13 = 65 Marks)                                                                                                                                                                                                                                              | Marks | CO | BL                      |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----|-------------------------|
| 11. a. | i. Solve the equation $x^2p + y^2q + z^2 = 0$ .                                                                                                                                                                                                                                       | 6     | 1  | L1,<br>L2,<br>L3,<br>L5 |
|        | ii. Form the partial differential equation by eliminating the arbitrary function from $z = f(2x+y) + g(3x-y)$ .                                                                                                                                                                       | 7     | 1  | L1,<br>L3,<br>L6        |
|        | Or                                                                                                                                                                                                                                                                                    |       |    |                         |
| 11. b. | Solve the equation $(D^3 + 2D^2D')z = e^{2x} - 3x^2y$ .                                                                                                                                                                                                                               | 13    | 1  | L1,<br>L3,<br>L5        |
| 12 a.  | Find the Fourier cosine series of $f(x) = \begin{cases} x, & 0 \leq x \leq 1 \\ 2-x, & 1 \leq x \leq 2 \end{cases}$                                                                                                                                                                   | 13    | 2  | L1,<br>L2,<br>L3,<br>L5 |
|        | Or                                                                                                                                                                                                                                                                                    |       |    |                         |
| 12 b.  | Obtain the Fourier series of $f(x) = x^2$ in $(-\pi, \pi)$ and hence deduce the sum $\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \dots$                                                                                                                                           | 13    | 2  | L1,<br>L2,<br>L3,<br>L5 |
| 13 a.  | A string is stretched and fastened at the end points at a distance $L$ apart.<br>Motion is started by displacing the string in the form $y = a \sin\left(\frac{\pi x}{L}\right)$ $0 < x < L$ , from which it is released at time $t = 0$ . Find the displacement at any time $t$ .    | 13    | 3  | L1,<br>L2,<br>L3,<br>L5 |
|        | Or                                                                                                                                                                                                                                                                                    |       |    |                         |
| 13 b.  | A bar of 10 cm long, with insulated sides has its ends A and B maintained at temperatures 50°C and 100°C respectively until steady state conditions prevail. The temperature at A is suddenly raised to 90°C and at B is lowered to 60°C. Find the temperature in the bar thereafter. | 13    | 3  | L1,<br>L2,<br>L6        |
| 14 a.  | Find the Fourier Transform of $f(x) = \begin{cases} 1- x , &  x  < 1 \\ 0, &  x  \geq 1 \end{cases}$ , and hence evaluate the integral $\int_0^\infty \frac{\sin^4 t}{t^4} dt$ .                                                                                                      | 13    | 4  | L1,<br>L2,<br>L5        |
|        | Or                                                                                                                                                                                                                                                                                    |       |    |                         |
| 14 b.  | i. Using Fourier Transform technique, determine $\int_0^\infty \frac{dx}{(x^2 + 4)(x^2 + 25)}$ .                                                                                                                                                                                      | 7     | 4  | L1,<br>L2,<br>L3,<br>L5 |
|        | ii. Prove that $e^{-x^2/2}$ is a self reciprocal under Fourier Transform.                                                                                                                                                                                                             | 6     | 4  | L1,<br>L2,<br>L3,<br>L5 |

|       |                                                                                             |    |   |                         |
|-------|---------------------------------------------------------------------------------------------|----|---|-------------------------|
| 15 a. | Solve $u_{n+2} - 2u_{n+1} + u_n = 2^n$ , $u_0 = 2$ , $u_1 = 1$ , using Z – transform.       | 13 | 5 | L1,<br>L2,<br>L3,<br>L5 |
|       | Or                                                                                          |    |   |                         |
| 15 b. | i. Obtain inverse Z – transform of $\frac{8z^2}{(2z-1)(4z-1)}$ , using convolution theorem. | 7  | 5 | L1,<br>L2,<br>L3,<br>L5 |
|       | ii. If $U(z) = \frac{2z^2 + 5z + 14}{(z-1)^4}$ , then find $u_2$ and $u_4$ .                | 6  | 5 | L1,<br>L2,<br>L3,<br>L5 |

| Q.No.                               | Question                                                                                                                                                                                                                | Marks | CO | BL                      |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----|-------------------------|
| <b>Part – C (1 x 15 = 15 Marks)</b> |                                                                                                                                                                                                                         |       |    |                         |
| 16                                  | Solve the Laplace equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ , subject to the condition $u(0, y) = u(l, y) = u(x, 0) = 0$ and $u(x, a) = \sin\left(\frac{n\pi x}{l}\right)$ . | 15    | 3  | L1,<br>L2,<br>L3,<br>L5 |

